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THE NATIONAL METEOROLOGICAL CENTER'S
SPECTRAL STATISTICAL INTERPOLATION ANALYSIS SYSTEM

ABSTRACT

At the National Meteorological Center (NMC), a new analysis system is being
extensively tested for possible use in the operational Global Data Assimilation

System. This analysis system is called the Spectral Statistical Interpolation (SS1)

Analysis system because the spectral coefficients used in the NMC spectral model

are analysed directly using the same basic equations as statistical (optimal) inter-

polation. Results from several months of parallel testing with the NMC spectral

model have been very encouraging. Favorable features include smoother analysis

increments, greatly reduced changes from initialization, and significant improve-

ment of 1-5 day forecasts. Although the analysis is formulated as a variational
problem, the objective function being minimized is formally the same one that

forms the basis of all existing optimal interpolation schemes. This objective

function is a combination of forecast and observation deviations from the desired
analysis, weighted by the inverses of the corresponding forecast and observation

error covariance matrices. There are two principal differences in how the SSI
implements the minimization of this functional as compared to the current OI
used at NMC. First, the analysis variables are spectral coefficients instead of

gridpoint values. Second, all observations are used at once to solve a single

global problem. No local approximations are made, and there is no special data

selection. Because of these differences, it is straightforward to include unconven-

tional data, such as radiances, in the analysis. Currently temperature, wind, sur-

face pressure, mixing ratio and SSM/I total precipitable water are used as the ob-

servation variables. Soon to be added is the scatterometer surface winds. In this
paper, we provide a detailed description of the SSI and present a few results.
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1. INTRODUCTION

Most of the major operational NWP centers in the world now assimilate ob-

servations into forecast models using some form of statistical or optimum inter-

polation (01). These systems are based on the ideas of Gandin (1963) and Elias-

sen (1954, reproduced in Ghil et al. eds), who each introduced statistical consid-

erations to the meteorological data assimilation community. While these 1O anal-

ysis systems are in widespread use, much interest is now centered on variational

methods, in particular the 4-dimensional "adjoint" procedures (Le Dimet and Ta-

lagrand, 1986, Lewis and Derber, 1985, Talagrand and Courtier, 1987, Courtier

and Talagrand, 1987, Derber, 1989). OI is derived in terms of probability and

statistics, while variational methods are based on combining model dynamics with

data with the relative weighting defined in an ad hoc manner. However, as is

illustrated in a review of analysis methods by Lorenc (1986), variational and sta-

tistical analysis methods do have a common basis and can be made equivalent by

proper definition of weights. Using a Bayesian approach, Lorenc (1986) derived

an objective function which can be used as the starting point for both existing 1O

procedures and any variational schemes. The derived objective function is a

combination of deviations of the desired analysis from a forecast and from obser-

vations, weighted by the inverses of the corresponding forecast and observation

error covariance matrices. The differences between schemes reduce to the spe-

cific practical approximations made in the solution of the analysis problem. Ear-

lier references to the work leading to this system refer to the analysis technique

as spectral optimum interpolation (Parrish, 1987, 1988, Parrish and Derber,

1988). However, to reduce confusion and to emphasize the differences from

conventional implementations based on local approximations to the full problem,

we have chosen to refer to the new analysis technique as Spectral Statistical In-

terpolation (SSI).

The idea of directly analysing data in terms of spectral coefficients is not

new. The Hough spectral analysis (Flattery, 1970), used operationally at NMC

from 1974-79, also minimized a globally defined objective function. The SSI

system described here has some similarities to the Hough analysis, but differs in

the use of a background (first guess) and the statistical considerations of 1O. In
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fact, the first two-dimensional version of the SSI (Parrish, 1988) also used a

Hough function representation of the analysis variables, but the current version of
the SSI system uses a more satisfactory basis for the analysis variables.

Compared to the existing NMC OI analysis systems (Dey and Morone, 1985,

DiMego, 1988, Kanamitsu, 1989), there are two principal differences in how SSI

approximates the minimum of the desired objective function. First, the analysis

variables are closely related to the sigma coordinate coefficients of the spherical

harmonic expansions of vorticity, divergence, temperature, logarithm of surface

pressure, and mixing ratio used by the NMC spectral model. The operational 01,

on the other hand, uses grid point values of heights, winds, and mixing ratio on

isobaric surfaces as the analysis variables. Because the analysis variables are

spectral, the forecast error covariance must be defined in terms of these spectral
variables. Some thought was given to this problem by Halem and Kalnay (1983),

but Phillips (1986) was the first to investigate the behavior of forecast errors in
terms of normal modes of a simple model. His work provided the initial inspira-

tion for the SSI by demonstrating a simple plausible model for forecast error co-
variance in terms of mode (or spectral) variables. By assuming errors to be

equally distributed among model slow modes only, and uncorrelated between
modes, he was able to derive physical space correlations which gave surprisingly

good agreement with empirically derived results from the ECMWF model (Hol-

lingsworth and Lnnberg, 1986, Lbnnberg and Hollingsworth, 1986). In this

paper, the error covariance model is slightly less restrictive than the one used by

Phillips (1986), with the analysis not restricted to slow modes and not equally

distributed among the modes. However, the error statistics in this paper are

currently still assumed to be uncorrelated between modes. (This assumption re-

sults in unrealistic background error variances, a weakness for SSI that will be

addressed in future investigations. See discussion.)

The second principal difference between the SSI and the operational OI is that

in the new system, all observations are used at once to perform the analysis glob-

ally. Because the SSI analysis variables are spectrally defined, the analysis must

be solved as a single problem and not approximated locally as is done in all cur-

rent operational systems. Also, the analysis increments can then be found direct-
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ly with no intermediate solution for weights. Performing the analysis globally has

the advantages of not producing discontinuities in the solution resulting only from

data selection and eliminating the need for the expensive procedure of data sort-
ing and selection. Traditional OI techniques could theoretically use all observa-

tions at once. However, this is generally considered to be too computationally un-

stable and expensive because it is necessary to invert a matrix of interobservation

correlations, which has a dimension equal to the number of observations.

These differences confer several additional advantages to the SSI system.

First, since the analysis is performed globally, no difficulties are encountered

when using temperature rather than height observations. There is usually a prob-

lem in relating the changes in the temperature field to a balanced change in the

velocity field in operational analysis systems because the analyses are quasi-hori-

zontal. For this reason, height is frequently the analysis variable. Since the

analysis is done 3-dimensionally in the SSI, the corresponding height changes can

be calculated from the temperature (and surface pressure) changes to create a

corresponding change to the velocity field. In fact, it is much more straightfor-

ward to include most types of observations in the SSI system. This will also be

demonstrated by the straightforward inclusion of the Special Sensor Microwave/I-

mager (SSMII) total precipitable water in the moisture analysis. Second, it is

possible to obtain an analysis increment which looks deceptively smooth, but ac-

tually yields as good or better rms fit to the observations when compared to the

local method of the operational OI. This, combined with a better overall bal-

ance, results also in significantly smaller changes caused by initialization.

To be fair, we must point out that the current implementation of the SSI sys-

tem does not actually use the observations directly. Primarily for reasons of

computational convenience, the observation residuals are combined to "superobs"

at the closest spectral model grid points. But the observation residuals are first

formed by interpolating the background fields directly to the location of each ob-

servation. In practice, some form of superobing will always be required to deal

with representativeness error. Superobing to the model grid seems like a natural

thing to do.
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In the next section, we present an outline of SSI, starting with the objective

function. Section 3 contains a detailed discussion of the representation of fore-

cast and observation error covariances. Next follow some results of individual

analyses and long term data-assimilation runs and resulting forecasts. Finally,

the results and present plans for future work will be summarized.
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2. THE ANALYSIS PROCEDURE

Both SSI as well as conventional OI minimize the same objective function (Ki-

meldorf and Wahba, 1970, Lorenc, 1986). This objective function is given by:

J= I [xTB-lx + (Lx _y)T(F + O)-(Lx )| (2.1)
2

where

x is an N component vector of analysis increments,

B is the NxN forecast error covariance matrix,

O is the MxM observational error covariance matrix,

F is the MxM representativeness error covariance matrix,

L is a linear tranformation operator which converts the analysis

variables to the observation type and location. Note that the

linearity in L is not required but is currently assumed for simplicity.

y is an M component vector of observational increments,

i.e., y = Yobs- Lxguess,

N is the number of degrees of freedom in the analysis,

M is the number of observations.

An expression for the minimizing solution can be found by differentiating J with

respect to x and setting the result equal to zero, which gives

B-x + L T(F+ O)-(Lx-y) =0 . (2.2)

Multiplying through by B and rearranging the terms results in

(I + BLT(F + O)-'L)x = BLT(F + o)-ly. (2.3)

To ensure symmetry in the matrix which multiplies x (required by the solution

algorithm), a matrix C is defined such that CTC = B. Since B will be a diagonal

matrix with positive elements along the diagonal (see next section), C is also a

diagonal matrix with diagonal elements equal to the square root of the diagonal

elements of B. Defining a new variable w = C-Ix and multiplying (2.3) by C- 1

results in

(I + CLT(F+ O)-'LC)w = CLT(F + O)-ly (2.4)
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or

Aw =f (2.5)

where

A= I+ CLT(F + O)-'LC (2.6)

and

f= CLT(F+ O)-ly (2.7)

This is the primary analysis equation that must be solved to produce the analysis.

Note that once w is found, the actual analysis increments are found by multiply-

ing by C. Note also that the scaling by C to obtain (2.5) has been done to im-

prove the condition of the matrix A, making (2.5) easier to solve.

The above derivation is general and is applicable to any analysis variable and

any observations (as long as pseudo-observations can be derived from the analy-

sis variables through the L operator). The ideal analysis variables would be the

amplitudes of the eigenvectors of the background error covariance matrix speci-

fied in terms of the model variables. In this case the B matrix would then be

diagonal with the eigenvalues of the background error covariance matrix in terms

of the model variables along the diagonal. But since the computational expense

of creating these eigenvectors is prohibitive, another approximate representation

has been chosen.

In defining the analysis variables, the balanced components of the mass and

momentum fields have been combined into a single variable. This allows the

balance between the mass and momentum fields to be implicitly included. Fol-

lowing the convention used for normal mode initialization of sigma coordinate

models, a mass variable is defined as

H= GT+ RT In(pf) (2.8)
g

where G is a finite difference representation of the hydrostatic integral (see ap-

pendix A), and T is a mean temperature profile which depends only on sigma.

H is partitioned into balanced (slow) and unbalanced (fast) parts, Hs and Hf re-
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spectively, using the linear balance equation to define Hs in terms of the relative

vorticity. The analysis variables are then given by the relative vorticity ~, the

divergence D, the unbalanced height variable Hf and the specific humidity q.

The transformation from these analysis variables to the model variables, t, D, T,

ln(pSfC), and q is given by

~¢~~~~~~~~~= ~,¢~~~~~~~ .(2.9)

D=D, (2.10)

a 2

H=-(V .fV) (V-2t) + Hf, (2.11)
g

Tr QH, (2.12)

and

ln(psfc) = WTH. (2.13)

In (2.9-13) f is the coriolis parameter, a the radius of the earth, and V- 2 is un-

ambigously defined because the domain is the whole earth. Q is a square matrix

of dimension equal to the number of sigma layers in the model, and W is a vec-

tor of similar length. Q and W arise from attempting to invert (2.8). Because H

is defined at the same levels as T, one degree of freedom is lost going from T

and In(ptfc) to H using (2.8). To recover the extra variable, (2.8) is inverted sub-

ject to the constraint that the second derivative of T is minimized at each layer in

the vertical(see appendix A). This approximation appears to work well. Finally,

the variables ~, D, H, and q are represented in the horizontal with the same

spherical harmonic expansions as used by the spectral model.

Initially, the discretization in the vertical was done in terms of the model's

vertical modes. The intent was to simulate as closely as possible the decomposi-

tion into slow and fast components by adapting the implicit normal mode formu-

lation of Temperton (1989), thus allowing direct control over the projection of the

analysis increment onto slow and fast modes. However the use of the model's

normal modes in the vertical resulted in an overemphasis of the upper levels of
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the model and created difficulties in the partitioning of the analysis increment
between temperature and surface pressure. Also, the model vertical modes are
the same for vorticity, divergence, and height variable, while it is clear that at
least for divergence, these are inappropriate functions (the external mode, for ex-
ample, has the same sign over the entire depth of the atmosphere, which is unde-
sirable for the divergence). Thus, the model vertical modes were replaced with

empirical orthogonal functions (EOFs) defined from a vertical error covariance

matrix (this has no effect on the slow modes, as defined by Temperton's scheme,

because they satisfy the linear balance equation). Ideally the vertical covariance

matrix would be calculated by comparing the true state to the background field.

But the truth is not available, so approximate vertical covariance matrices have

been defined using the difference between a 24 hour forecast and a verifying ini-
tialized analysis defined on the model's Gaussian grid and averaged globally.

It is not obvious that the higher vertical EOFs for the streamfunction will con-

tribute positively to reducing the variance in the perturbation height modes.
Through experimentation it was found that 6 vertical EOFs of vorticity were opti-

mal in defining the balanced part of the height variable. Thus, when calculating

the EOFs, streamfunction EOFs are obtained, then the first 6 are used with the
linear balance relationship to get balanced height errors which are removed from
the total height error. Finally EOFs are obtained for the unbalanced part of the
height error, the divergence error, and the mixing ratio error. Note that for
each variable the EOF's are defined independently. The first four of these
modes for each of the four variables are shown in Fig. 1.

A complete definition of the transformation operator L as used in the current

version of the SSI is given in appendix A. Ideally L would be defined such that

it first transforms from the analysis variables to T, Psfc, u, v, q and Pw (total pre-

cipitable water) on a sigma coordinate Gaussian grid and then interpolate these
values to the observation locations. However, for computational reasons an ap-

proximation has been introduced into the L operator. Instead of performing the
final interpolation to the observation locations, the observational increments and

errors have been approximated as "superobservations" (superobs) defined at the
Gaussian grid points. Thus the L operator only transforms the analysis variable
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to the Gaussian grid. Some of the effects of the horizontal interpolation to the

observation locations were included in the superobs by using the transpose of the
linear interpolation operator to define the distribution of the observation informa-
tion to the surrounding eight vertices (or four vertices for surface pressure) of
the grid volume. For profile data such as radiosonde data, the data are first in-
terpolated to the guess sigma coordinate levels in the vertical to prevent the un-

representative significant level information from dominating the other data. Note
that in calculating the initial increments between the observations and the back-

ground field (the y vector), the L operator still includes a horizontal and vertical

interpolation to the observation location before the formation of the superobs on
the gaussian grid. Thus, the observation increments are calculated at the obser-
vation locations before superobing to the Gaussian grid points.

Satellite temperature superobs were created in a slightly different manner to

partially account for the strong spatially correlated errors in the observations. In

the creation of these superobs, three classes of temperature soundings were avail-
able; clear, partly cloudy and cloudy retrievals. It was decided that for each su-

perob, only the satellite retrievals containing the minimum amount of clouds will

be used. Thus, if only one clear sounding was available within the grid volume

along with many cloudy soundings, only the clear sounding is used. All the tem-

perature increments and observational error variances for the soundings contain-
ing the minimum cloudiness are averaged at the nearest grid point. The averag-

ing of the observational error variances reduces the weight given the observations

in the analysis procedure commensurate with an assumption of perfect correlation
of the observational error within the box surrounding the grid point.

To include the precipitable water (Pw) observations in the analysis required

one additional step. Since precipitable water is not a basic variable defined on

the grid, it is necessary to include in the L operator an integration of the specif-

ic humidity.

18

Pw = Ps/g E q,(Aa (2.14)
a=1

The surface pressure is approximated in this equation by the background surface
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pressure from the six hour forecast guess inorder to keep L a linear operator.
Thus, the direct inclusion of the SSM/I total precipitable water only requires the
inclusion of the integration, given by (2.14), in the L operator and the inclusion

of the transpose of this integration in the LT operator.

In solving the analysis equations in conventional OI, a set of weights are

found first and then used to interpolate the observation increments to the grid

points. The intermediate process of finding the weights can become ill-condi-

tioned when two observations are located close to each other. For the SSI analy-

sis system, no difficulties are encountered with collocated observations since the

analysis is done directly in spectral space.

The solution to (2.5) is found using a standard linear conjugate gradient algo-
rithm (e.g., Gill et al, 1981). The current version of the SSI uses 50 iterations

for both the moisture analysis and the dynamical variables. Most of the expense
in each iteration comes from the application of the L and LT operators. This is

not suprising since these operators contain the transforms to and from the Gaus-

sian grid. Note that currently the moisture analysis is completely independent

from the analysis of the other variables. The gradient of (2.1) is reduced by 3-5

orders of magnitude. Only small changes in the analysis are noted after the gra-

dient has been reduced by 2 orders of magnitude. Despite the large amount of
computation, the SSI system runs faster than the current operational analysis sys-
tem. This is primarily because of the removal of the sorting and selection algo-

rithms, but there is also some advantage which results from forming superobs on

the model grid.
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3. THE SPECIFICATION OF THE FORECAST AND OBSERVATION ERROR CO-
VARIANCES:

The forecast and observation errors define the relative weight each observa-
tion is given along with the relative amounts of information projected onto the
analysis variables. For this reason they are obviously of vital importance to the

analysis procedure. A set of statistics which appears to work reasonably well has
been developed, but this is an area of continuing research. In the following three
subsections, the current (February 1991) state of the statistics will be described.

a. The forecast error covariances:

The forecast error covariances (the B matrix) were estimated by first forming

differences between the operational NMC T80 spectral model sigma coefficients

for 24 hour forecast and initialized analyses verifying at the same time. Thirty

consecutive days of 0000UTC differences were used. More would be desirable,

but this number is determined by computational considerations. These errors in
coefficients of vorticity, divergence, temperature, logarithm of surface pressure,

and specific humidity were then transformed to the analysis variables as outlined

by (2.9-13). Finally, the variances of these transformed variables were computed
from the set of 30 cases. All off-diagonal elements of the full forecast error co-
variance matrix were assumed to be zero. Finally, the variances are rescaled to

convert from a 24 hour to a 6 hour estimate of the forecast error variance (the

NMC global data assimilation system ingests data at 6 hour intervals). This re-

scaling parameter was found empirically. This is a very crude first step in speci-

fying the forecast error covariance. A brief discussion of possible future im-

provements appears at the end of the paper.

To see what are the effective forecast error correlations in physical space that
result from the above spectral forecast error covariance model, the output of the
SSI system for a single observation can be examined. These result from a set of
forecast error statistics which were determined from 30 days of cases for Janu-

ary, 1991. The statistics as currently computed may have some seasonal depen-

dence, but this has not been investigated yet. Reruns of summer cases using

these statistics indicate that the SSI is robust with regard to the choice of forecast

error statistics (see next section). Figure 2 shows the resultant analyses of tem-
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perature and wind for a single temperature with 1 degree residual at sigma level
5 (about 850mb) and 45N, 100W. Note that the fields are qualitatively similar to
that which would be produced by current operational systems. The horizontal

scale appears to be broader than that from the current operational system. How-
ever, tests performed in parallel show that the use of these statistics consistently
produce fits to radiosonde observations as good or better than the operational
system(see next section). Fig. 3 shows a similar result for a temperature obser-
vation at ON, 100W. Because of the spectral representation and the linear bal-
ance constraint between mass and momentum fields, the SSI result is very differ-
ent from that which would be produced from the operational NMC OI analysis,

for which a mass observation at the equator produces no wind correction.

By allowing only the diagonal elements of the forecast error covariance to be

nonzero, it is not possible to include the spatial variability in the forecast error

variance which results from the inhomogeneous distribution of observations. This
variability can be partially included by modifying the observational error vari-
ances. At this time we are not including this spatially varying component of the
error. Proper inclusion of this spatially varying component of the error will un-
doubtedly result in further improvement of the results. Note however that some
latitudinal dependence of the error is implicit in the system because of the linear
balance constraint between mass and momentum fields. The wind error variance
is homogeneous over the globe, but the balanced part of the mass errors become
very small as the equator is approached.

b. The observation error variances:

The definition of the observational error covariances controls the relative
weighting of the various observations. In this section, only the variances will be

considered. The inclusion of correlated error will be discussed in the following
sub-section. The basic observational error variances are given in Table 1. To
the extent possible the current operational values (DiMego, 1988; Dey and Mo-
rone, 1985) were used. These basic variances can be modified based on the ini-
tial observation - guess increment, the extent of extrapolation (if any), and possi-
bly to account indirectly for spatially varying forecast error variance.
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As a simple quality control procedure, the observational error variance is in-

creased if the observation residual is greater than 3 times the assumed error
standard deviation (the square root of the variance). In these cases the observa-
tional error standard deviation is increased by the absolute value of the observa-
tional increment. When the initial increment is greater than 5 times the assumed
error standard deviation, the observational error is assumed to be infinite and
thus the effect of the observation is removed.

The observational error variance is also modified depending on the amount of

vertical extrapolation if the data lies above or below the top or bottom sigma lay-
er of the model. This is done to allow data which are slightly outside the model

grid to be used, but the data far outside the grid are given little weight. This is

especially important for surface pressure data. The model topography is -often
higher than the station elevation so that the surface observation lies below the

model sigma domain. A correction is applied to the surface pressure observation

to account for the terrain difference. But, the larger the terrain difference, the
greater the potential error introduced by the correction.

c. The observation error correlations:

Observational errors are correlated to varying degrees. These error correla-
tions are best defined for satellite data, which are both horizontally and vertically

correlated. However other types of data such as radiosonde observations also

contain vertical correlations in their errors. The technique used by the SSI sys-
tem to solve the analysis equation (2.5) requires the inverse of the observation
error covariance matrix. The inverse could be defined directly, but it is difficult
to know how to do this properly, and once again we have potentially very large

matrices to work with. If the correlations are all local, then the inversion prob-

lem can be approximated as a series of small matrix inversions, as in current OI

schemes. However if the correlations are broad, as is the case for horizontal

correlation of satellite data, the direct inversion of the matrix can be difficult.
The current version of the SSI system only includes horizontal correlation of sat-

ellite temperature retrievals. This is done by creating another spectral represen-

tation, this time for the observation error. Multiplication by the inverse of the

observation error covariance matrix for satellite data reduces to the application of
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a series of inexpensive operators, similar to the spectral representation of the
forecast error covariance.

The observation error covariance matrix is defined by

O = ECE, (3.1)

C = RSCSTR (3.2)

where

C = observational correlation matrix,

= spectral transform of the correlation matrix (assumed diagonal),

R = diagonal normalization matrix,

S = spherical harmonic transform matrix, and
E = diagonal matrix of observational error standard deviations.

A detailed definition of the diagonal spectral correlation matrix C appears in ap-

pendix B.

The analysis equation (2.5) requires the inverse of the observation error co-
variance matrix. In terms of (3.1-2), this is given by

O- 1 = E-1C-'E - 1 , (3.3)

C- 1 = R-1S-TC-lS-IR -l (3.4)

Each of the terms defining 0O1 can be easily applied as an operator. Thus to

include the correlated error involves the inclusion of an additional string of oper-
ators when applying the complete operator A in (2.5).
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4. RESULTS

The system described in the previous section has been subjected to a long pe-

riod of testing and evaluation. In this section some of the characteristics of the

system will be presented, with emphasis on the differences from the current op-
erational system. The discussion will be divided into three main subsections.

First, the analyses from both the operational and SSI systems will be compared.
These comparisons will include analyses produced using the same background
(first guess) fields along with results from a long term independent assimilation.

To evaluate the extent of imbalances in the resultant analyses, the changes made
by the initialization procedure will also be presented. Finally, evaluations of the

forecast skill from the operational and SSI assimilation systems are shown.

a. Analysis comparisons

The current NMC global operational objective analysis technique (Dey and

Morone,1985; DiMego, 1988; Kanamitsu, 1989) has produced good quality results

over many years of usage. The results from the operational analysis system will

be compared to those from the SSI system in two ways. First, the same back-

ground (first guess) field will be inserted into both the analysis systems, along

with comparable observational data sets. Note that some differences exist be-

tween the datasets primarily because the SSI system uses temperature observa-
tions while the operational system uses height observations. Also, the quality

control systems are not the same in both systems. Thus, small differences will

exist because different observations will be rejected by the quality control. The

differences in the analyses resulting from the different datasets are small when
compared to those from the differences in the analysis procedures. The second
set of comparisons will be between analyses produced after long separate assimi-

lation periods. The previously mentioned differences between the input data
would also apply for this comparison over the long assimilation period. In the

assimilation mode, the possibility of good or bad characteristics of the analysis

systems feeding back into the forecast and thus the next analysis is present.
In Figures 4 and 5, the 250mb height and wind increments (analysis -

- 17-
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background) are shown for 0000UTC Mar. 6,1991. These results are typical of

those found on any day or at any vertical level. Both were created using the op-

erational 6 hour forecast from 1800UTC Mar. 5, 1991 as a background field.

The SSI analysis is done in the model's sigma coordinates. Thus, it was neces-

sary to integrate the temperature field to produce heights and to perform a verti-
cal interpolation to create comparable analyses. The height and wind increments

from the SSI analysis are smoother and smaller than the operational increments.
While some of the difference results from the background error covariances in
the SSI emphasizing the larger scales, some of the smoothness is also due to the

global use of all data. The changes in the data used from one point to the next
in the operational system introduces noise into the analysis. Despite the fact that
the analysis increments are smoother and smaller in the SSI system, the resulting

analysis produces a comparable fit to the data. The fit of the analyses to the ra-

diosonde data is presented in Table 2 for the same day. The differences between

the operational and SSI analyses are of well within the variability from one day

to the next with some days showing a closer fit from the operational and some

days the SSI fits best. Finally, note the much smaller changes in the tropics ap-

parent in the height increments of the SSI analysis. One would expect the tropi-

cal height field to be reasonably smooth without large changes from one time pe-

riod to the next. As will be seen in the next subsection, many of the changes

introduced in the tropics by the operational analysis are removed by the initializa-

tion procedure.

Figures 6 and 7 show the 250mb height and wind differences from the op-

erational analyses and the SSI analyses for different backgrounds. The upper
panel in each figure is the result from the operational background fields (as in

the previous paragraph), while the lower panel is the result from a background

obtained from an assimilation cycle which applied the SSI analysis every 6 hours.

This assimilation has been running independently from the operational system for

80 days. As can be seen from the results, the differences are larger in the trop-
ics and southern hemisphere as might be expected. However, the differences be-
tween the analyses are largest over the poorest observed regions and appear to
be reasonable when compared to the expected error in the analyses. The fit of
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the analysis to the data for the cycled version of the SSI system is also compara-

ble to those from the operational system, as can be seen from inspection of
Table 2.

The time mean analysis differences between the cycled SSI and operational

analysis was also examined. The two most significant differences, weaker tropi-

cal precipitation and a weaker mean Hadley circulation, are related to each other.

The zonal mean v-component for Mar. 6, 1991 is shown in Fig. 8. The opera-

tional assimilation system tends to produce a stronger Hadley circulation which
decays with time. The SSI Hadley circulation is similar to the model Hadley cir-

culation after a 5 day forecast and does not decay with time. Thus, the strength

of the SSI Hadley circulation appears not to be controlled by the analysis system
but rather the model dynamics and physics. This difference is significant and is

currently under investigation.

b. Initialization

In most operational assimilation systems, the analyses are initialized before

forecasts are made. This is necessary because imbalances between the mass,
momentum and diabatic fields can produce large amplitude gravity waves that

can amplify in an assimilation system. Unfortunately, the initialization is done as

an independent step after the analysis and thus usually adjusts the fields away
from the data. Ideally, the necessary balance would be imposed by the analysis

procedure making the initialization unnecessary (see Williamson and Daley,

1983). Thus, the magnitude of the adjustment by the initialization is a measure
of the quality of the balance imposed in the analysis procedure.

In Figures 9 and 10, the initialization increments (initialized fields minus anal-

ysis) for the 250mb heights and winds are shown for the same case. The SSI

increments are created using the same background field as the operational sys-

tem, but similar results are found using the long term assimilation. As can be
seen from the figures, the initialization makes very small changes to the SSI anal-

yses, while the operational analyses are substantially altered. Often in the trop-

ics, the initialization removes features introduced by the analysis. The SSI analy-
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sis does not produce these features, so it is not necessary to remove them. In

Table 2, the fits to the data before and after initialization are closer than those
from the operational system. The very small changes by the initialization for the

SSI system suggests the possibility of removing the initialization step. We have

completed a one week assimilation with no initialization. No harmful effects of

removing the initialization have been found but it is necessary to perform further

experiments for longer periods.

c. Forecast results

The most important operational test of analysis quality is the resultant accura-

cy of the forecasts. Five day forecasts have been produced from the SSI assimi-

lation results in parallel with the operational system for an 80 day assimilation

period. These forecasts were produced in real time using the operational data-

base. In addition a 30 day case from Aug. 1990 was examined in a retrospective

mode. The quality of a forecast can vary greatly from one day to another, so we

will present average results for a 29 day period from February and March 1991.

These results are similar to those found in the previous two months and those
from Aug. 1990. The forecasts are all verified against the operational analyses.

Figures 11-14 show average anomaly correlation scores over the 29 day peri-

od for zonal waves 1-20, verified against the operational analysis. Figure 11

shows the result for 1000mb in the northern hemisphere. The improvement by

day 5 is about 3%. Similar, but slightly smaller improvement is evident at

500mb for the northern hemisphere (Figure 12). The southern hemisphere re-

sults are also encouraging. The low correlation at day 0 for 1000mb and 500mb

(Figures 13 and 14) indicates that the two systems have departed from each oth-

er significantly. Still, by day 3, even with the handicap of verifying against the

operational system, the SSI surpasses the operational. Similar results are found

by looking at other measures of the forecast skill.

In addition to the subjective scores, the analyses and forecasts are currently

undergoing a subjective evaluation from the operational forecasters in NMC's Me-
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teorlogical Operations Division (MOD). The preliminary results from this evalua-

tion are encouraging but the evaluation is not yet completed.
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5. DISCUSSION

The SSI system as currently formulated has potential for substantial improve-

ment. However, even without further improvements the system compares very

favorably with the current operational system and can be solved faster than the
current operational analysis. The increments created by this analysis are smaller,

smoother and better balanced than those from the operational system but still fit
the data equally well. The forecast results from this system have also been en-
couraging, with consistently better results coming from the SSI system.

One of the potential future improvements to the SSI system is in the represen-
tation of the forecast error covariance B. B is difficult to obtain in practice, es-

pecially for a spectral model. It is dependent on the error due to model misrep-
resentation of the "true" atmospheric state, and on the errors of all past observa-

tions assimilated by the evolving model forecast. In general it isca full matrix of

dimension equal to the number of model variables, currently 0(106), and will

always be much too large to keep in its entirety. For small systems ( O(103)),

the engineering community uses the Kalman filter (Kalman, 1960, Kalman and

Bucy., 1961), in which B is explicitly computed. The Kalman filter cannot be

applied directly to NWP systems because of the large number of variables. How-

ever, important progress is being made using Kalman filters for one- and two-di-

mensional NWP models to determine expected properties of B for realistic situa-

tions, and what approximations to B are useful (see Cohn and Parrish, 1991;

Daley, 1991 for a detailed exposition of this subject). One area for future work

is to utilize experience with idealized models and the Kalman filter in improve-

ments to the forecast error representation.

The results can be further enhanced by improving the current crude quality
control. Recently an improved quality control system has been developed by

Woollen (1991). The results presented in this paper did not utilize the new qual-

ity control because it was designed for heights and winds, while SSI works from

temperature and wind observations. Changes to the quality control system are

currently being made and no serious difficulties are anticipated.

The spectral model's resolution was increased from T80 to T126 on Mar. 6,
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1991. New forecast error statistics were gathered from a parallel run of the
T126 model. Parallel tests with this higher resolution model have begun and no
serious difficulties have been encountered. At this point in time not enough

cases have been accumulated to draw any conclusions . However it is anticipated

that the SSI system will work even better in the T126 model since the analysis is

performed in sigma coordinates and the T126 model's orography is much closer

to reality.

One of the advantages of the SSI system is its ability to incorporate noncon-

ventional observations. This will be a major area of emphasis for future im-

provements. The first and easiest nonstandard observations to include are satel-
lite observations of total precipitable water and surface wind speeds. The preci-

pitable water has been successfully incorporated. A longer-term goal is to use
satellite radiances directly in the analysis. In principal this is similar to adding

other forms of non-conventional data. However, determining the operator which

goes from model variables to observed variables is very difficult. Significant

progress is being made at other centers on this problem (Eyre, 1989, for exam-

ple).

The constraint between the mass and momentum fields is currently a linear
balance relationship. While this is somewhat better than a geostrophic constraint,

it still can be improved. As discussed by Young (1990), the inclusion of friction

in the constraint is vital for properly analysing the boundary layer winds. The
addition of this term to the linear balance equation is relatively straightforward,

and an attempt to examine the effects of this term will be undertaken in the near

future.

Finally, the SSI is a 3-dimensional analysis. However, its formulation makes

it possible to mesh it with a 4-dimensional "adjoint" variational system (LeDimet

and Talagrand, 1986, Derber, 1989, Talagrand and Courtier, 1987). This would

allow a large increase in the effective database since the data over an entire time
interval could be included. Thus the poorly known statistics would be of relative-

ly less importance. The introduction of a full 4-D operational variational system

is obviously not possible in the near future. However, the successful develop-
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ment of a 3-D variational system, with many potential enhancements, is the first

step towards large improvements in future analysis and assimilation systems.
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APPENDIX A. DETAILED DESCRIPTION OF THE FORWARD OPERATOR L

This appendix describes the y = Lx operation, the conversion from analysis to

pseudo-observations. For the current version of SSI, L is the product of five op-

erators, L = LsL4L3L2L1 . Let Xo -x, xl = Llxo,..., y = Lsx4 . Then each opera-

tor is presented in the following five subsections:

a. xl = Llx 0 :

The first operator L1 converts from scaled vorticity, divergence, and unbal-

anced height to physical units. This scaling is used in spectral normal mode ini-

tialization schemes to symmetrize the linear model operator from which the nor-

mal modes are computed. Although we do not use normal modes in SSI, this

scaling still proves useful because it improves the conditioning of the analysis

equation (2.5). For L1 ,

'l nm = a-' [n(n + 1)] 12nm (A.la)

D'nm = a-l[n(n + 1)I±Donm (A.lb)

Hinm = Oam

Hlinm =- Hlnm (A.lc)

q n = qonm - (A Id)

In the above, I and n are spherical harmonic indices, where I is longitudinal wave

number, -J < I < J, and n is the two-dimensional wave number, II1 < n < J.

The third index m is the vertical mode number, 1 < m < No. J is the triangular

wavenumber cutoff for horizontal resolution, and Na is the number of model

sigma layers. Finally, a = 6.37x10 6 m, g = 9.8ms - 1 , and h= 3000m. The scale

depth is arbitrary here. The value 3000 gives approximate equivalence between

scaled mass and wind variables.
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b. X2 = L 2 x1 :

L2 represents the vertical transform in terms of EOFs. Each variable has its
own EOF representation in the vertical. Thus,

NO

~J2nk = 3 VLmlnm (A.2a)
m=l

6

(A.2)(MH)2nk = i Vkminm (A2b)
m=l

N0

Difnk = V'mDlnm (A.2c)
m=l

No

H'2nk = 3 VkmHflnm (A.2d)
m=l

N.

q2nk = l'Imqlnm (A.2e)
m=l

Notice that (/H)l2,k in (A.2b) is a partial sum of just the first six vorticity verti-

cal modes. This is used in the next transform, L3 , to get the contribution of

vorticity to total mass variable via the linear balance equation. The indices n and

1 are as before, but k is the model sigma layer index.

c. x3 = L3x2 :

The L3 transform involves latitude sums of various combinations of spherical

harmonics. At this point, vorticity and divergence are converted to u and v, and

the linear balance equation (cf. (2.11)) is incorporated to get the contribution of

vorticity to mass variable. This results in,

J
3jk= [L2nkjn -D2nkQJn ] (A.3a)

n=ll2
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J
VIjk = EI [- ignkQn - D'kRj.] (A.3b)

n=l[l

'3jk =E [(KH)2 kBjf + BI2.kPj.nI (A-3c)
n=l/l

q3jk = q2nkPjn (A3d)
n=llI

In the above, i=-V and Pj-- P5(q5j) are associated Legendre polynomials de-

fined with the same normalization used by the NMC spectral model, viz.,

~/2

( (Pq)) 2 cos qdo = 1 . (A.3e)

-z/2

The functions which convert vorticity and divergence to winds are

Qjn=- Qn(0) = a[n(n + 1)]-1I(cosj)- Pt (0) (A.3f)

and

R|n -= R (0;) = a[n(n + 1 d-. (A.3g)

Note that the wind components are not scaled by cos(41 ) as is standard practice

in spectral models. Also, the Gaussian grid used in SSI is augmented by adding

north and south pole points as an aid for interpolation to observation locations

when obtaining observation residuals. The apparent division by zero at the pole

points which appears in (A.3f) is taken care of by noting that Pt,(15) has a factor

cos' 0 .

The function which gives a balanced mass variable from vorticity is

Bj3n =- B1 (q) = -- [(n + 1)- (1 -a~)n-2dnP~1(¢31] (A.3h)

whereg
where
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d = [ n0'~~~ + 0 'n0 t -(A.3i)
(2n + 1) (2n - 1)

and 6jk is the Kroneker delta, 6 jk = 1 for j=k, but is otherwise zero. Finally

Q = 7.292x10- 4 s- 1

d. x4 =L4x 3 :

The L4 operator is the Fourier sum in longitude which is the same for each of

the four variables and is illustrated just for the specific humidity:

J
I', e m, (A.4)q4sjm = q3jm(A.4)

-J

The longitudes As are equally spaced and the sum is accomplished with a fast

Fourier transform (FFT).

e. y = L 5 Xs4 :

The final operator L5 converts the total mass variable H4 to grid values of T

and ln(psfc) . Because N, + 1 output quantities are required with only No input

quantities given, some additional constraint is required. After some experimenta-

tion, it appeared that the best condition to apply was to minimize the 2-grid

component in the vertical of the derived temperatures. The problem is to invert

equation (2.8),

RT
H = GT+-ln(psfc) (A.5a)

g

This is accomplished by minimizing the following objective function for tempera-

ture:

J = TrSTST (A.5b)

where the matrix S is an (Na -2) x No matrix with all zeros except for the three

diagonals
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Sjj = 1 , Sjj+ = - 2 , Sj,j+2 = 1 , 1 j s Na-2 . (A.5c)

The matrix S applies 2nd derivatives to the temperatures in the vertical. First
(A.5Sa) is used to eliminate T from (A.5Sb) and then the resulting equation is

minimized with respect to ln(psfc). Finally we use this value of ln(psfc) and

solve (A.5Sa) for T. The result is

T= QH4 (A5d)

and

ln(psfc) = WTH (A.5e)

where the matrix Q is given by

Q = G-1 [I- (DTD)-1TDTC] (A 5f)

and the vector W is given by

W= (g)(DTD)-ICTD . (A.5g)

The matrix C and the vector D are given by

C= SG-1 (A.Sh)

and

D = SG-'T. (A.5i)

Finally, the hydrostatic matrix G is here defined as follows:

Gjj= aj, 1 j < Na, (ASj)

Gkj =j + aj+l j1 < j < N-1,j+ 1< k < N o, (A Sk)

Gk]=0 , 2 < j< Na, 1 < k < j1 , (A.51)

R
al = - ( Rln(a) . (A.5m)

g

and

aj R In a3 2 < j < N, (A.5n)a 2=-(-)ln( r ),2<j_ No.2g -1
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APPENDIX B. DESCRIPTION OF SATELITE ERROR CORRELATION MODEL

Jerry Sullivan (NESDIS, pers. comm.) has provided the following correlation

model for satellite soundings:

c(r) =(1 + L)e L (B.1)
L

where r is separation between observations and L is currently 400km.

To obtain the elements of the diagonal matrix C in (3.2), we apply the fol-

lowing derivation for the representation of a correlation function on the sphere.

A general correlation function between two points on a sphere has the following

spherical harmonic representation:

co= 03 3 3 3 1(1 x - 2) (B.2)C(0i1, Al; 0b2, 2) = E, E E E: eCnljln2P.j l(00~P.2, (02)e(1i-2) B)
nl=0 n2=0 1l=-njl 2=-n2

A special form which yields a homogeneous and isotropic correlation is

co n

c(0 11,21; q52,22 )= E E Pl' (q5)PIlI(q3)eii(Q42) (B.3)
n=O 1=-n

Using the addition theorem for spherical harmonics (see e.g. Korn and Korn,

p874), (B.3) reduces to a form which directly illustrates the homogeniety and iso-

tropy:

c(y) = 2 a (B.4)

where Y is the spherical distance in radians between the points (Al, 2) and

(022, 2 2) being correlated:

cos y = sin 01 sin q52 + cos q1 COS 02 os(2l 1 - 22) (B.5)

To obtain Cn for a specified function c(y) we must evaluate the following in-

tegrals:
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3r

=( 2n -j )PO (') cos ,dq9 (B.6)

2

(B.6) is evaluated numerically using Gaussian quadrature.
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Table 1. Observation error variances.

wind errors (ms-1 )

1000mb 700mb 500mb 300mb 100mb 50mb

radiosonde 1.4 2.4 2.8 3.4 2.5 2.7

AIREP 4.5 4.5 4.5 4.5 4.5 4.5

dropsonde 1.4 2.4 2.8 3.4 2.5 2.7

ACARS 1.4 2.4 2.8 3.4 2.5 2.7

low cloud drift 3.9 3.9 3.9 3.9 3.9 3.9

high cloud drift 6.1 6.1 6.1 6.1 6.1 6.1

surface 2.5 2.5 2.5

temperature errors (K)

1000mb 700mb 500mb 300mb 100mb 50mb

radiosonde 1.8 1.3 1.3 2.0 3.1 4.0

AIREP 2.7 2.7 2.9 3.4 4.6 4.6

dropsonde 1.8 1.3 1.3 2.0 3.1 4.0

ACARS 1.8 1.3 1.3 2.0 3.1 4.0

clear satellite retrievals 4.7 3.9 4.0 4.5 4.0 4.0

cloudy satellite retrievals 5.6 4.6 4.6 5.0 4.5 4.5

ocean surface 2.2

land surface 3.2 2.9 3.0

other observations

radiosonde moisture 2% relative humidity (all levels)

radiosonde surface pressure lmb

dropsonde surface pressure 2mb

ocean surface pressure 1.6mb

land surface pressure 1.0mb

bogus surface pressure 3.0mb

SSM/I precipitable water 4mm
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Table 2. Fits of operational and SSI fields to all radiosonde observations within

25mb of 250mb (975 temperature, 970 wind observations).

mean T error rms T error rms vector wind error
operational

background -.91 2.26 8.79

analysis -.64 1.77 5.60

initialized -. 65 1.79 5.85

SSI (operational background)

background -.91 2.26 8.79

analysis -.46 1.68 5.86

initialized -. 49 1.69 5.98

SSI (SSI background)

background -.94 2.27 8.65

analysis -.52 1.73 5.93

initialized -.54 1.74 6.07
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FIGURE CAPIIONS

Fig. 1. First 4 vertical EOFs for (a) scaled vorticity, (b) scaled divergence, (c) un-
balanced height variable, and (d) specific humidity.

Fig. 2. Analysis for a single temperature observation at layer 5 and 45N, 100W. (a)
temperature increment at layer 5, (b) u increment at layer 7, and (c) v increment
at layer 7.

Fig. 3. As in Fig. 2, but for a single observation at ON, 100W.

Fig. 4. 250mb height analysis increments (analysis - background) for (a) SSI and (b)
operational. Both were created using operational background. Contour interval is
10m.

Fig. 5. Same as Fig. 4, but for 250mb wind analysis increments.

Fig. 6. 250mb height difference (operational - SSI) for (a) both with same back-
ground, and (b) SSI background from SSI assimilation for 60 days. Contour in-
terval is 20m.

Fig. 7. Same as Fig. 6, except for wind differences.

Fig. 8. Zonal mean cross sections from (a) SSI from assimilation and (b) operational
analyses for OOOOUTC Mar. 6, 1991.

Fig. 9. Same as Fig. 4, except for initialization increments (initialized - analysis).

Fig. 10. Same as Fig. 5, except for initialization increments.

Fig. 11. Anomaly correlation scores for 1-5 day northern hemisphere 1000mb height
forecasts, verified against operational analyses, averaged over the period
15Jan-14Feb 1991. Solid line is from operational assimilation, dashed SSI.

Fig. 12. Same as Fig. 11, but for northern hemisphere 500mb height forecasts.

Fig. 13. Same as Fig. 11, but for southern hemisphere 1000mb height forecasts.

Fig. 14. Same as Fig. 11, but for southern hemisphere 500mb height forecasts.
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Fig. 1 First 4 vertical EOFs for (a) scaled vorticity, (b) scaled divergence, (c) un-

balanced height variable, and (d) specific humidity.
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CONTOUR INTERVAL= 1,00 FACTOR= 1.E+02
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Fig 2 . Analysis for a single temperature observation at layer 5 and 45N, 100W. (a)

temperature increment at layer 5, (b) u increment at layer 7, and (c) v increment
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CONTOUR INTERVAL= 1.00 FACTOR- 1.E+03

Lig.23. As in Fig. 2, but for a single observation at ON, 100W.
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operational. Both were created using operational background. Contour interval is
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Fig. 5. Same as Fig. 4, but for 250mb wind analysis increments.
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Fig. 6. 250mb height difference (operational - SSI) for (a) both with same back-
ground, and (b) SSI background from SSI assimilation for 60 days. Contour in-
terval is 20m.
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Fig. 11. Anomaly correlation scores for 1-5 day northern hemisphere 1000mb height
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Fig. 12. Same as Fig. 11, but for northern hemisphere 500mb height forecasts.
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as Fig. 11, but for southern hemisphere 1000mb height forecasts.
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Fig. 14. Same as Fig. 11, but for southern hemisphere 500mb height forecasts.


